Pulsed Laser Imaging of Rapid Ca\(^{2+}\) Gradients in Excitable Cells

Jonathan R. Monck,* Iain M. Robinson,* Ariel L. Escobar,† Julio L. Vergara,‡ and Julio M. Fernandez*

*Mayo Clinic, Department of Physiology and Biophysics, Rochester, Minnesota 55905, and †Department of Physiology, University of California at Los Angeles, Los Angeles, California 90024 USA

ABSTRACT Excitable cells are thought to respond to action potentials by forming short lived and highly localized Ca\(^{2+}\) gradients near sites of Ca\(^{2+}\) entry or near the site of Ca\(^{2+}\) release by intracellular stores. However, conventional imaging techniques lack the spatial and temporal resolution to capture these gradients. Here we demonstrate the use of pulsed-laser microscopy to measure Ca\(^{2+}\) gradients with submicron spatial resolution and millisecond time resolution in two preparations where the Ca\(^{2+}\) signal is thought to be fast and highly localized: adrenal chromaffin cells, where the entry of Ca\(^{2+}\) through voltage dependent Ca\(^{2+}\) channels triggers exocytotic fusion; and skeletal muscle fibers, where intracellular Ca\(^{2+}\) release from the sarcoplasmic reticulum initiates contraction. In chromaffin cells, Ca\(^{2+}\) gradients developed over 10–100 ms and were initially restricted to discrete submembrane domains, or hot spots, before developing into complete rings of elevated Ca\(^{2+}\) concentration. In frog skeletal muscle large, short-lived (~6 ms) Ca\(^{2+}\) gradients were observed within individual sarcosomes following induction of action potentials. The pulsed laser imaging approach permits, for the first time, the capture and critical examination of rapid Ca\(^{2+}\) signaling events such as those underlying excitation-secretion and excitation-contraction coupling.

INTRODUCTION Ca\(^{2+}\) entry through Ca\(^{2+}\) channels during action potentials is the trigger for exocytosis in excitable secretory cells (Douglas, 1968). The observation that exocytosis is triggered more effectively by agents that stimulate Ca\(^{2+}\) influx than those that mobilize intracellular Ca\(^{2+}\), and discrepancies between the Ca\(^{2+}\) sensitivity of exocytotic responses and measured, spatially averaged Ca\(^{2+}\) changes during depolarization of chromaffin cells led to the suggestion that spatially localized Ca\(^{2+}\) increases might be responsible for triggering exocytosis (Cheek et al., 1989; Augustine and Neher, 1992). Models of Ca\(^{2+}\) entry, Ca\(^{2+}\) binding, and diffusion have predicted that the opening of Ca\(^{2+}\) channels causes the formation of a ring-like Ca\(^{2+}\) gradient reaching a concentration of tens or hundreds of micromolar just beneath the plasmalemma (Sala and Hernandez-Cruz, 1990; Nowycky and Pinter, 1993). However, efforts to capture these Ca\(^{2+}\) signals in adrenal chromaffin cells using existing Ca\(^{2+}\) imaging techniques with a resolution in the hundreds of milliseconds have detected a much smaller (<1 μM) Ca\(^{2+}\) gradient around the cell periphery during prolonged (100 ms or longer) depolarizations (O'Sullivan et al., 1989; Cheek et al., 1989; Neher and Augustine, 1992). Limitations in imaging technology have prevented Ca\(^{2+}\) measurements at earlier times. Whether the measured Ca\(^{2+}\) gradients represent temporally low-passed filtered remnants of much larger (>100 μM) gradients occurring shortly after Ca\(^{2+}\) channel opening remains unknown. It is important to understand the nature of the Ca\(^{2+}\) signal for exocytosis because the magnitude of the Ca\(^{2+}\) gradient will help define the types of Ca\(^{2+}\) binding proteins that may trigger fusion.

Ca\(^{2+}\) signaling in skeletal muscle is also very fast. An action potential triggers a sequence of rapid events that results in Ca\(^{2+}\) release from intracellular stores within a few milliseconds. Activation of the contractile proteins by the Ca\(^{2+}\) ions and force generation occur shortly thereafter. During an action potential, depolarization of the transverse tubular system is thought to induce Ca\(^{2+}\) release predominantly from the terminal cisternae of the sarcoplasmic reticulum, a highly specialized reticular network that serves as the principal intracellular Ca\(^{2+}\) store (Winegrad, 1970; Somlyo et al., 1981). This hypothesis was first suggested by the distribution of Ca\(^{2+}\) determined autoradiographically (Winegrad, 1970) and the distribution of the Ca\(^{2+}\) release channels (Fraznini-Armstrong, 1975), and received strong support from electron-probe microanalysis of ultrathin cryosections, which showed that there were large (60%) decreases in the total Ca\(^{2+}\) of the terminal cisternae after tetanic stimulation (Somlyo et al., 1981). Modeling of this localized Ca\(^{2+}\) release by calculating the effects of Ca\(^{2+}\) binding proteins and diffusion predicts the formation of intrasarcomeric Ca\(^{2+}\) gradients that last 10–20 ms before equilibrating within the sarcosome (Cannell and Allen, 1984). In spite of the fundamental importance of Ca\(^{2+}\) signaling in excitation-contraction coupling, the hypothesized presence of Ca\(^{2+}\) gradients remains unverified because current imaging techniques are not capable of the temporal resolution required for measuring the predicted Ca\(^{2+}\) gradients.

Thus, with conventional imaging techniques, the type of Ca\(^{2+}\) signals that occur in response to the brief depolarization of an action potential are either missed entirely or captured at late stages when Ca\(^{2+}\) ions have already filled most of the cytosol. It is clear that, for detection of such Ca\(^{2+}\) signals, an instrument capable of millisecond time resolution and sub-micron spatial resolution is required. Temporal resolution is conventionally obtained by triggering an event and taking
measurements as rapidly as possible thereafter. For imaging experiments this approach is severely limited by the speed of the cameras and other hardware. An alternative approach is to take a single measurement from a series of successive events, each image delayed differently with respect to the event trigger. As long as the response can be reproduced consistently, very high time resolutions can be obtained. Using this approach with a pulsed laser imaging system, Kinosita and colleagues obtained sub-microsecond temporal resolution using potentiometric dyes: the pulsed laser provided the high intensity epi-illumination necessary to obtain a fluorescent image with good signal-to-noise characteristics and the short duration of the illumination allowed the capture of a "snapshot" of the fluorescence from indicator molecules excited during the light pulse (Kinosita et al., 1988; Hibino et al., 1991). Here we describe the use of a pulsed laser fluorescent microscope for measurement of Ca2+ gradients in single excitable cells. We have used the method to measure the development and decay of Ca2+ gradients in bovine adrenal chromaffin cells and frog skeletal muscle fibers, two model systems commonly used to study stimulus-secretion and excitation-contraction coupling, respectively.

MATERIALS AND METHODS

Pulsed laser Ca2+ imaging

The imaging system consisted of an inverted epifluorescence microscope (model IM-35, Carl Zeiss, Oberkochen, Germany), a pellet-cooled charge coupled device (CCD) camera (model C220, Photometrics Ltd., Tucson, AZ) with a 1024 × 1000 pixel CCD chip (model TI 215–30, Texas Instruments, Lubbock, TX), and a host microcomputer (Compaq Desk Pro 386/25, Compaq Computer Corp., Houston, TX) to control image acquisition and image processing using a Mercury array processor (model M13200, Mercury computer systems, Inc., Lowell, MA) as previously described (Monck et al., 1992). To this we added a high intensity pulsed coaxial flash lamp dye laser (Lumen X model LS-1400, Phase-R Corporation, New Durham, NH), to provide short (350 ms) high intensity pulses of illumination (Kinosita et al., 1988), and a patch-clamp setup composed of a List EPC-7 patch-clamp amplifier and an Indec IDA15125 interface for data acquisition and synchronization of the laser with the Ca2+ current measurement. The reproducibility of the laser intensity for successive pulses was better than 2%, as measured from fluorescence of rhod-2 in internal solution (see below for composition). The laser was coupled with a liquid light guide (UV-VIS Liquid Light Guide, 5 mm diameter, 0.47 N.A.; Oriol Corporation, Stratford, CT) to the epifluorescence port of the microscope using a custom built adapter with a fused silica plano-convex lens (1 inch diameter, F/2; Oriol) positioned 2 inches from the end of the light guide, so that the entire field of view was illuminated. The lasing dye, Coumarin 521 (0.02 mM in methanol), gave a suitable emission spectrum (500–540 nm) for excitation of rhod-2. The epifluorescence filter block contained a 570 nm DRLP dichroic mirror and 585 nm EFLP emission filter (Omega Optical, Brattleboro, VT). Zeiss 100X (N.A. 1.3) and 40X objectives (0.65 N.A.) were used to image muscle fibers and chromaffin cells, respectively. Image pairs were taken for control and depolarizing pulses.

Image processing

Where indicated (see Figs. 2 and 6), the images were filtered using an inverse filter designed to remove out-of-focus light. The "no neighbors" deblurring filter is essentially a high pass filter that selectively removes the lower spatial frequencies associated with out-of-focus light and, consequently, corrects for the low pass filtering effect of the microscope optics (Monck et al., 1992). The theoretical point spread function for the objective is used to determine the filter characteristics. The filter was derived from the nearest neighbors filter, which uses an image plane above and below to estimate the out-of-focus light in an image. We have previously shown that the no-neighbors filter gives deblurring almost indistinguishable from that of the nearest neighbors technique (Monck et al., 1992). This is because the out-of-focus light estimated from the in-focus plane is almost the same as that estimated from the neighboring planes. The deblurring algorithm is as follows:

\[
I_f = (O_f - 2cO_s)G
\]

where \(I_f\) is the two-dimensional Fourier transform of the observed image; \(I_f\) the restored in-focus image, \(S_r\) is the in-focus contrast transfer function (the Fourier transform of the point spread function), and \(c\) an empirical constant that determines the amount of deblurring applied. \(G\) is a Wiener inverse filter of the form \(G = S_r(S^2 + \alpha)\), where \(S_r\) is in-focus contrast transfer function and \(\alpha\) is an empirical constant. The Wiener filter is a noise reduction filter; the best value for \(\alpha\) depends upon the total signal and signal to noise of the images (typical values are in the range 0.5-5.0, increasing values give increased smoothing). Because the properties of the objective dominate the transfer function of the microscope, we use theoretical contrast transfer functions for the objective to calculate \(S_r\) and \(S_i\) using the equations given by Agard (1984). For calculating \(S_r\), we assume a section spacing (\(\Delta z\)) which serves to control the thickness of the optical sections. Thus, the parameters \(\Delta z\) and \(\alpha\) determine the extent of the deblurring (see Monck et al. (1992) for details). Good deblurring uses settings in the range 0.5 μm to 1 μm for \(\Delta z\) and 0.48 to 0.50 for \(c\), but this requires a relatively high intensity image. Other parameters for calculating \(S_r\) and \(S_i\) are the numerical aperture of the objective lens, the wavelength of emitted light (600 nm), pixel size, and the index of refraction of the objective immersion oil. The filter parameters in Fig. 2 were \(\Delta z = 2 \mu m, c = 0.45, \alpha = 5\), numerical aperture = 0.65, pixel size = 135 nm. Note that this does not give optimal deblurring, which would have required an image with a higher intensity. The filter parameters in Fig. 6 were \(\Delta z = 2 \mu m, c = 0.49, \alpha = 3\), numerical aperture = 1.3, and pixel size = 62.5 nm. The chromaffin cell images in Figs. 3 and 4 were filtered to reduce the noise before calculating the ratio: the filter parameters (\(\Delta z = 2 \mu m, c = 0.2\), and \(\alpha = 5\)) were set to reduce the highest frequencies (i.e., the noise) with minimal deblurring characteristics (i.e., the estimated Ca2+ concentrations were the same after filtering as before filtering). Similar noise reduction could be obtained using a 3 × 3 spatial filter with all the elements set to unity. The inverse filtering usually introduces some negative values into the images. Therefore, we applied a threshold operation to set negative values to 0 (i.e., a non-negativity constraint).

Ca2+ concentration estimates

For the chromaffin cells, the ratio of the stimulus image divided by the control image is displayed as a pseudo-color image representing the fractional change in fluorescence. Since the ratio corrects for differences in indicator concentration, indicator excluded volume and light path length, the fractional change in fluorescence represents a measure of the Ca2+ change, provided that the cell does not move between the control and stimulus image. Rhod-2 does not undergo a shift in either excitation or emission spectra on binding Ca2+, so we cannot use a ratiometric calibration (Mintza et al., 1989). Instead, the change in Ca2+ concentration was estimated from the fractional fluorescence change (stimulus/control ratio), as described previously (Monck et al., 1988), using 1300 nM for \(K_C\) and 0.005 for \(\alpha\) (the ratio of the fluorescence of free and Ca2+ bound rhod-2, determined in vitro using internal solution with "zero" Ca2+ (10 mM EGTA) and saturating Ca2+ (10 mM Ca2+, 10 mM EGTA), respectively). Using a resting value of 100 nM for the resting Ca2+ concentration, this gives peak Ca2+ concentrations of around 200 nM. In general, estimates of the resting free Ca2+ in the range 50–200 nM give peak Ca2+ increases of about 2- to 2.5-fold. Since most of the fluorescence signal comes from the Ca2+ bound form of rhod-2, the Ca2+ estimates are relatively insensitive to the value of \(\alpha\) used, so provided the in situ value of \(\alpha\) is less than 0.05 the estimates of Ca2+ remain accurate. For the skeletal muscle fibers the \(K_C\) and \(\alpha\) determined in the intracellular
solution were 1300 nM and 0.007, respectively (Escobar et al., 1994). Because of the large fractional change in fluorescence (six- to sevenfold in Fig. 6) in the muscle fibers, the calculated value for the peak Ca\(^{2+}\) concentration is more sensitive to the estimate of the resting Ca\(^{2+}\) concentration (for ratio = 6: 100 nM for the resting gives 1.1 M for the peak, 150 mM gives 2.5 M and 200 mM gives 6.6 M). These values are similar to the values reported in frog skeletal muscle by others (1-10 M, depending on Ca\(^{2+}\) indicator; see Konishi et al., 1991 for discussion).

Adrenal chromaffin cells

Chromaffin cells were prepared from bovine adrenal medulla by enzymatic digestion (Burgoine et al., 1988). Isolated cells were resuspended in Dulbecco's modified Eagle's medium supplemented with 25 mM HEPES, 10% fetal calf serum, 8 M fluorescenturidine, 50 M gentamycin, 10 M cytosine arabinofuranoside, 2.5 M fungizone, 25 U/ml penicillin, and 25 g/ml streptomycin and plated at a density of 100,000 cells/ml on glass-bottomed chambers. Cells were kept 1-7 days in culture before use. For experiments, cells were washed in an extracellular medium composed of 120 mM NaCl, 20 mM HEPES, 4 mM MgCl\(_2\), 5 mM CaCl\(_2\), 4 mg/ml glucose, and 1 or 2 M tetrodotoxin (pH 7.25). The internal solution used in the patch-clamp pipettes contained 125 mM Cs\(^{+}\)-glutamate, 30 mM HEPES, 8 mM NaCl, 1 mM MgCl\(_2\), 2 mM Mg2-ATP, 0.3 mM GTP, 0.3 mM Cs-EGTA, and 0.2 mM rhod-2 (triammonium) (pH 7.2). These solutions allow measurement of Ca\(^{2+}\) currents because Na\(^{+}\) and K\(^{+}\) currents are prevented. The holding potentials have not been corrected for junction potentials, which means that, for the Cs\(^{+}\)-glutamate based solution used here, the actual holding potentials are 10-12 mV more negative (Neher, 1993).

Frog skeletal muscle fibers

An inverted double vaseline gap technique was used for simultaneous electrical recording of induced action potentials and high resolution Ca\(^{2+}\) imaging (Escobar et al., 1994). Single skeletal muscle fibers were dissected from the semitendinosus muscle of the bullfrog *Rana catesbeiana*. Short segments (2-3 mm) of muscle fibers were extended on thin coverslips which formed the bottom of a double vaseline gap chamber and stretched to sarcolemal spacings of 3.8-4.0 M. The ends of the muscle fibers at the lateral pools were fixed to the bottom of the chamber with adhesive tape. A Teflon molding with three holes and two small partitions was placed over the coverslip to separate three pools that were electrically connected (by agar bridges) to an electronic circuit for stimulation of the muscle fiber in a current clamp configuration. The ends of the fibers within the lateral pools were permeabilized with saponin (200 M g/ml) to allow for diffusion of solutes into the myoplasm. The two lateral pools were then filled with an internal solution containing: 110 M K-aspartate; 20 M K-MOPS; 5 M Na\(_2\)-HPO\(_4\); 5 M Na\(_2\)-ATP; 150 M EGTA; 3 M MgCl\(_2\); 0.1 mg/ml creatine kinase, and 300 M rhod-2 (pH 7.0, 245 mOsm). The fibers were externally perfused in the central pool with Ringer's solution at about 15°C.

RESULTS

Pulsed laser imaging for rapid Ca\(^{2+}\) imaging

To study the kinetics of Ca\(^{2+}\) gradients we needed an imaging system capable of high temporal and spatial resolution. We assembled a pulsed laser imaging system comprising a direct-readout, cooled CCD camera and a high power coaxial flashlamp dye laser, as shown in Fig. 1. The cooled CCD camera is a lag-free, low noise imaging device which efficiently accumulates charge in each element of the CCD chip in proportion to the number of incident photons (Hiraoka et al., 1987). A transient high intensity illumination from the pulsed laser allows us to capture a "snapshot" of the fluorescence from indicator molecules excited during the 350-ns duration of the laser pulse (Kinosita et al., 1988). We synchronized firing of the laser pulse with the opening of voltage-sensitive Ca\(^{2+}\) channels in cells loaded with the fluorescent Ca\(^{2+}\) indicator rhod-2, and were able to obtain snapshots of the Ca\(^{2+}\) distribution at known times after the depolarizing stimulus. Time courses were built up by taking a series of images for successive depolarizing stimuli, each delayed differently with respect to the event trigger.

Ca\(^{2+}\) gradients develop at discrete submembrane domains in adrenal chromaffin cell

Fig. 2 shows a pair of fluorescent images taken of a chromaffin cell kept at the holding potential of -60 mV (control).
and then 5 ms after the end of a 50-ms depolarization to +20 mV (stimulus). The corresponding traces of membrane current show that this depolarization protocol induced a non-inactivating Ca\(^{2+}\) current, which had a voltage dependence similar to that previously demonstrated (Fenwick et al., 1982; Artalejo et al., 1991). The spike artifact in the current trace indicates when the laser was fired. Although an increase in fluorescence attributable to a Ca\(^{2+}\) increase can be seen in the raw images, the precise distribution of the Ca\(^{2+}\) change is obscured because of differences in light path length, indicator concentration, and volume occupied by the indicator. When these differences are compensated for, by dividing the stimulus image by the control image, it can be clearly seen that the Ca\(^{2+}\) increase is spatially restricted to a region just beneath the plasma membrane located at about 4 o'clock, and that the increase over the remainder of the cell is considerably smaller. From the fluorescence change, we can estimate a Ca\(^{2+}\) increase from 100 nM to 200 nM at the hot spot. However, the out-of-focus light that appears in fluorescence images causes attenuation of observed Ca\(^{2+}\) gradients (Monck et al., 1992). Fig. 2 also shows a ratio image obtained after applying a digital deblurring filter to the control and stimulus images (Monck et al., 1992). From this image we estimated a peak Ca\(^{2+}\) concentration of about 300 nM, indicating that the Ca\(^{2+}\) gradient is in the range 25–50 nM/μm.

Different patterns of localized Ca\(^{2+}\) elevation were seen in different cells, but the pattern in each cell was reproducible. Many cells had discrete hot spots of elevated Ca\(^{2+}\) in one or more locations around the cell periphery, whereas in other cells the hot spots had merged into partial rings (Fig. 3). In all cases, the increases were largest immediately beneath the plasma membrane. In general, hot spot patterns were seen for depolarizations of 50 ms or shorter, whereas complete rings of elevated Ca\(^{2+}\) were seen for longer depolarizations. The reproducibility of the Ca\(^{2+}\) response allows us to acquire time courses by taking a series of images where the delay between depolarization and the trigger for the laser is varied.

The Ca\(^{2+}\) gradients develop relatively slowly compared with the Ca\(^{2+}\) currents. Fig. 4 shows a typical example. Very little change in Ca\(^{2+}\) was apparent 10 ms after opening the Ca\(^{2+}\) channels. After 20 and 30 ms, a highly localized gradient appeared at about 1 o'clock. There was some indication of smaller increases in Ca\(^{2+}\) elsewhere around the perimeter of the cell, but no significant increases in the cell interior. Thus for short depolarizations the Ca\(^{2+}\) stimulus is restricted to specific regions beneath the cell membrane. At 55 ms, 5 ms after termination of the pulse, the gradient in the original location has increased in magnitude and breadth and there is a clear ring of elevated Ca\(^{2+}\) around the entire perimeter, as well as a smaller increase in the centre of the cell. The change...

FIGURE 2 Fast Ca\(^{2+}\) imaging in adrenal chromaffin cells. Images of rhod-2 loaded chromaffin cells were taken 5 ms after the end of a 50-ms depolarization to +20 mV (stimulus) or without a depolarization (control). Holding potential, –60 mV. Below each image are the corresponding Ca\(^{2+}\) currents. The arrows marked the time of the laser discharge. Images are averages of three depolarizations (2 s apart). The ratio of the stimulus and control images is displayed in pseudocolor and clearly shows the localization of the Ca\(^{2+}\) increase. The pipette was located at 3 o'clock. The profile follows the line through the image. The figure also shows that application of a digital deblurring filter, designed to remove out-of-focus light, causes a sharpening of the Ca\(^{2+}\) gradient.
in fluorescence integrated over the whole cell increased linearly with pulse duration and showed no non-linearities that might indicate intracellular Ca\(^{2+}\) release. At the end of the depolarizing pulse the Ca\(^{2+}\) gradients collapsed over several hundred milliseconds, leaving a spatially uniform Ca\(^{2+}\) increase, as indicated by the images taken 200 and 400 ms after the beginning of the pulse (Fig. 4).

Intrasarcomeric Ca\(^{2+}\) gradients in frog skeletal muscle

Considerably faster and larger gradients were observed within individual sarcomeres in frog skeletal muscle. Single muscle fibers were mounted in an inverted vaseline gap chamber and stretched to prevent contraction (Escobar et al., 1994). Depolarization under current clamp elicited an action potential (Fig. 5 A), during which the sarcomeric length was unchanged. An image taken without an action potential shows a low and featureless background fluorescence (Fig. 5 C, control). No changes were observed during the first 3 ms following onset of the action potential, consistent with the 3 ms triadic delay for the Ca\(^{2+}\) transient (Vergara and Delay, 1986), but at 3.5 ms a change in fluorescence with a banded pattern was observed (Fig. 5 C). The bands became more pronounced at 5 ms, whereas at longer times (> 10 ms) the fluorescence became homogeneous (Fig. 5 C). The spacing of the fluorescence bands corresponded to the sarcomere length (Fig. 5 B). In experiments using the confocal spot technique to measure the kinetics of the Ca\(^{2+}\) increases from micron diameter spots positioned either at the Z-line or M-line, the largest and fastest increases were shown to occur over the t-tubules (Escobar et al., 1994). In these experiments the location of the t-tubules was confirmed by staining the muscle fibers with RH-795, a potentiometric dye. Fig. 6 shows the time course in another muscle fiber. For this fiber, the data is displayed as ratio images after filtering with a digital deblurring algorithm (Monck et al., 1992) to obtain a more accurate image of the Ca\(^{2+}\) distribution within a sarcomere (Fig. 6). Below each image are the corresponding intensity profiles through three sarcomeres, which show steeper Ca\(^{2+}\) gradients than suggested by the unprocessed images. The rapid appearance of the Ca\(^{2+}\) gradient between 2.8 and 3 ms (Fig. 6), equivalent to a Ca\(^{2+}\) increase to about 600 nM in 200 \(\mu\)s, is faster than in chromaffin cells, where 300 nM is attained only after a 50-ms depolarization (Figs. 2 and 4). This faster Ca\(^{2+}\) increase in the muscle fiber is presumably due to the massive release from the terminal cisternae of the sarcoplasmic reticulum.

DISCUSSION

Temporal and spatial limitations of pulsed laser Ca\(^{2+}\) imaging

The results presented in this paper clearly demonstrate that pulsed laser imaging techniques can be used to measure Ca\(^{2+}\) gradients with millisecond time resolution, while retaining the maximum spatial resolution attainable with fluorescent
microscopy. The two key components of the system are the pulsed coaxial flash-lamp dye laser and the cooled CCD camera. The pulsed laser is used to illuminate the entire field of view. The high intensity of the laser pulse provides sufficient illumination to obtain a good emission intensity, and the short duration provides a snapshot of the fluorescence from the indicator excited within the pulse length, in this case 350 ns. The duration of the snapshot will also include the lifetime of the excited state of the indicator after the pulse. However, for BAPTA series fluorescent indicators the lifetime is very short (2 ns for Fura-2; Keating and Wensel, 1991). The slow readout rate of the CCD camera does not affect the time resolution because the CCD only receives photons during the laser pulse (and shortly, thereafter); there is negligible background detected during the readout time because of the excellent noise characteristics of the camera. Instead, time courses must be built up by repeating the stimulus with different delays before triggering the laser. Thus, the important requirement for this approach is a physiological response that is highly reproducible.

The experiment in Fig. 6 clearly shows the appearance of a Ca²⁺ gradient over a 200-µs time interval (2.8–3 ms). The time limitation on the pulsed laser imaging technique is determined by the length of the laser pulse (350 ns for the Phase-R LS1400 laser used here) and the kinetic properties of the fluorescent indicator. For BAPTA-series Ca²⁺ indicators, such as Fura-2 or rhod-2, the conventional Ca²⁺ calibration procedures assume that Ca²⁺ and the Ca²⁺ indicator are in equilibrium. For these dyes equilibration times are of the order of milliseconds (Lattanzio and Bartschat, 1991). Thus, for the measurements in chromaffin cells and the decay phase of the muscle Ca²⁺ transients, the rhod-2 would have been in equilibrium. On the other hand, the indicator would not have been in equilibrium during the rapid increase in the muscle fibers, resulting in an underestimate of the free Ca²⁺ concentration. Because the on-rate constant for Ca²⁺ binding is ≳10⁸ M⁻¹ s⁻¹ (Lattanzio and Bartschat, 1991), the BAPTA-series indicators are sensitive to much faster changes in Ca²⁺ concentration. However, novel kinetic calibration procedures will need to be developed to calculate the free Ca²⁺ concentration. Measurements using fluorescence probes for other cellular parameters are not necessarily subject to these limitations. For example, Hibino et al. (1991) have successfully measured changes in transmembrane potential with submicrosecond time resolution.

![Time-course of Ca²⁺ gradients development in response to opening of Ca²⁺ channels in chromaffin cells.](image-url)

(A) Sequence of ratio images taken following different time delays (10–400 ms, marked by the arrows), measured from the beginning of a pulse of 50 ms duration from −60 mV to +20 mV. The profiles (bottom) show the ratio values along the lines through the images (top). Note that the peak of Ca²⁺ gradient increases throughout the duration of the depolarization and the gradients dissipate over hundreds of milliseconds after the end of the pulse.
Several other approaches to improve temporal resolution of imaging experiments have been made. These range from using conventional video equipment at the maximum possible rate (17 ms/frame; Takamatsu and Wier, 1990) to using CCD arrays with reduced spatial resolution or reduced area of interest, and using CCD cameras in frame transfer mode, which has been successful at measuring Ca\(^{2+}\) transients in cardiac myocytes with 10 ms temporal resolution (O'Rourke et al., 1990). The scanning confocal microscope has been used in line-scan mode to measure Ca\(^{2+}\) gradients in bullfrog sympathetic neurons (Hernandez-Cruz et al., 1990; Nohmi et al., 1992) and rat hippocampal neurons (Segal and Manor, 1992). The results reveal Ca\(^{2+}\) gradients that slowly develop over hundreds of milliseconds, similar to the results in chromaffin cells, reported here. However, although the line scan mode can have a temporal resolution of about 4 ms, the signal to noise is not good enough to examine the gradients after only a few milliseconds. A disadvantage of the confocal line scan method is that information is only obtained in one dimension. On the other hand, the confocal line scan can be used to measure the time course of a one-shot event, whereas the pulsed laser imaging only obtains a single snapshot and requires a reproducible response to build up a time course.

A major advantage of pulsed laser imaging is that temporal resolution is not gained at the expense of spatial resolution. For example, the Ca\(^{2+}\) gradients measured in the frog skeletal muscle fibers used a 1.3 N.A. objective, which has a potential maximum spatial resolution of about 0.2 μm. In the current experiments, the images include contamination with out-of-focus light, which effectively reduces the spatial resolution. However, digital deblurring techniques can reduce the contamination with out-of-focus light, as shown for chromaffin cells in Fig. 2 and for a muscle fibers in Fig. 6. Alternatively, because the response to each action potential is highly reproducible, it would be possible to perform optical sectioning on the cells and obtain a three-dimensional data set for reconstruction of a three dimensional image (Agard et al., 1989; Fay et al., 1989).

Intrasarcomeric Ca\(^{2+}\) gradients in frog skeletal muscle

The experiment shown in Fig. 3 demonstrates the measurement of an intrasarcomeric Ca\(^{2+}\) gradient in skeletal muscle and provides further evidence that the action potential induced Ca\(^{2+}\) release comes predominantly from the terminal
cisternae of the sarcoplasmic reticulum. Although this hypothesis is supported by experiments showing the autoradiographic distribution of 45Ca2+ (Winegrad, 1970), the distribution of the Ca2+ release channels (Franzini-Armstrong, 1975), and electron-probe microanalysis measurements of the total Ca2+ in the terminal cisternae after tetanic stimulation (Somlyo et al., 1981), direct visualization of intrasarcomeric Ca2+ gradients had not been possible before development of the pulsed laser Ca2+ imaging technique shown here. The demonstration that intrasarcomeric Ca2+ gradients form rapidly and last less than 10 ms before the Ca2+ concentration becomes homogeneous within the sarcomere (Fig. 5) fits reasonably well with a model of Ca2+ release and diffusion within individual sarcomeres where the Ca2+ gradient was predicted to last 10–20 ms (Cannell and Allen 1984).

The Ca2+ gradient in skeletal muscle fibers develops very rapidly. The experiment in Fig. 6 clearly shows a Ca2+ gradient that became apparent between 2.8 and 3 ms. During this 200 µs interval, the Ca2+ increased by about 500 nM. This rapid Ca2+ increase in the muscle fiber is presumably due to the massive release from the terminal cisternae of the sarcoplasmic reticulum, where the Ca2+ current density is estimated at >200 pA µm−2 (Franzini-Armstrong, 1975). Although Fig. 5 seems to indicate that the Ca2+ concentration also increases rapidly in center of the sarcomere, it is possible the fluorescence increase in the center of the sarcomeres could come from out-of-focus light from underlying t-tubules. As shown in Fig. 6, there appears to be little increase in Ca2+ between the t-tubules for the first few milliseconds after Ca2+ release when a digital deblurring filter is used to reduce out-of-focus information. However, the signal to noise in this experiment makes it difficult to exclude a small Ca2+ increase at the M line. Experiments using the confocal spot technique to measure high resolution time courses have shown that the Ca2+ increases rapidly both at the t-tubule and in the center of the sarcomere, with no measurable delay, which suggests that there may also be some Ca2+ release from the longitudinal cisternae of the sarcoplasmic reticulum (Escobar et al., 1994). Together, the pulsed laser imaging and confocal spot techniques provide the tools to further investigate the spread of the action potential-induced Ca2+ increases within single sarcomeres.

Localized Ca2+ gradients in adrenal chromaffin cells

In chromaffin cells, standing gradients of Ca2+ slowly develop at discrete domains beneath the cell membrane. Although Ca2+ changes restricted to 5- to 20-µm regions of neuronal processes have been observed experimentally (Silver et al., 1990; Regehr and Tank, 1990; Guthrie et al., 1991; Muller and Connor, 1991), this is the first report of such highly localized Ca2+ influx in small round cells. One factor responsible for the restriction of the Ca2+ increase to discrete submembrane domains could be that the Ca2+ channels activated by depolarization are preferentially localized in these regions of the plasma membrane. Clustering of Ca2+ channels has previously been reported in several cell types (Westenbroek et al., 1990; Robitaille et al., 1990), as well as in the active zones of synaptic terminals and saccular hair cells (Smith and Augustine, 1988; Augustine et al., 1991; Roberts et al., 1990). Recent studies using microvoltametry have revealed secreting and non-secreting domains on the surface of chromaffin cells (Shroeder et al., 1994), which raises the interesting possibility that the Ca2+ hot spots mark the location of exocytotic sites.
Previous studies on adrenal chromaffin cells have reported complete rings of elevated Ca\(^{2+}\) around the cell periphery approximately 100 ms after the onset of a depolarizing stimulus (O’Sullivan et al., 1989; Cheek et al., 1989; Neher and Augustine, 1992). Our results, showing that for short depolarizations the Ca\(^{2+}\) stimulus is restricted to specific regions beneath the cell membrane, do not contradict those observations since the hot spot patterns seen for short (<50 ms) depolarizations, typically develop into complete rings after longer depolarizations. It has generally been assumed that the rings seen at late times represent temporally low-pass filtered remnants of much larger, earlier elevations of Ca\(^{2+}\) in the 10–100 µM range, as predicted by Ca\(^{2+}\) modeling studies (Sala and Hernandez-Cruz, 1990; Nowycky and Pinter, 1993). In contrast, our results show that Ca\(^{2+}\) gradients develop over 10–50 ms and that the observed Ca\(^{2+}\) changes are small. Only after opening the Ca\(^{2+}\) channels for 50 ms does the Ca\(^{2+}\) concentration at the hot spot reach 300 nM.

The presence of maintained Ca\(^{2+}\) gradients indicates that the movement of Ca\(^{2+}\) ions entering the cell is restricted, since diffusion of free Ca\(^{2+}\) (or Ca\(^{2+}\) bound to rhod-2) in aqueous solution predicts movement of 1 µm in 1 ms. Zhou and Neher (1993) have shown that chromaffin cells have substantial amounts of immobile Ca\(^{2+}\) buffers, enough to reduce the effective diffusion coefficient to 0.1 \(\times 10^{-6}\) cm\(^2\) s\(^{-1}\) (or about 0.15 µm in 1 ms). Maintained Ca\(^{2+}\) gradients develop in the presence of immobile Ca\(^{2+}\) binding sites because preferential binding to the immobile sites restricts diffusion of free Ca\(^{2+}\) to the cell interior (Sala and Hernandez-Cruz, 1990; Nowycky and Pinter, 1993). These models predict that the presence of the indicator results in some spreading of the gradient due to diffusion of the Ca\(^{2+}\) indicator complex, which suggests that, in the absence of the indicator, the gradients might remain even more spatially localized. However, predicting the effects of the indicator is further complicated by the possibility that a substantial fraction of the rhod-2 might be bound, as has been reported for Fura-2 (Konishi et al., 1988), and that mobile Ca\(^{2+}\) buffers such as calbindin, a small Ca\(^{2+}\) binding protein, are found in some cells (Roberts, 1993), although chromaffin cells do not have large amounts of endogenous mobile Ca\(^{2+}\) buffers (Zhou and Neher, 1993). Nevertheless, the ability, as described here, to measure Ca\(^{2+}\) gradients simultaneously at high spatial and temporal resolution in small excitable cells, along with the advent of new membrane anchored Ca\(^{2+}\) indicators (Etter et al., 1994), offers the opportunity to investigate the interaction between local Ca\(^{2+}\) entry and cytosolic buffering, and how these factors interact to regulate exocytosis.

CONCLUSION
Ca\(^{2+}\) signaling in millisecond time scales underlies the physiological response to action potentials in excitable cells. We have used pulsed laser Ca\(^{2+}\) imaging to measure the time courses of the development and decay of Ca\(^{2+}\) gradients in chromaffin cells and skeletal muscle fibers. The pulsed laser imaging method was successful because it is not limited by the poor temporal and/or spatial resolution of other imaging techniques. This approach can be readily adapted to study cellular responses to rapid photolysis of caged compounds (Ca\(^{2+}\), IP\(_3\), ATP, neurotransmitters) or to the capture of rare and/or transient events.

REFERENCES

